PRIMO STUDIO AVANZATO DI RICERCA SULLA FISICA INFORMAZIONALE

PI-Relazione unificata $z-R-\Phi$

Introduzione del problema

Questo Studio affronta il nodo strutturale della Fisica Informazionale: la relazione esatta e **unificata** tra il redshift informazionale z(t), la traiettoria autocosciente R(t) e il potenziale di attualizzazione $\Phi(t)$. È il punto in cui **cosmo, informazione e coscienza** si saldano nella forma metrica della CMDE 4.1 (agosto 2025). La sfida è trasformare tre grandezze apparentemente distinte in un'unica dinamica variazionale capace di attraversare le tre fasi ufficiali di CMDE 4.1 senza fratture: iperprimordiale z_1 , raccordo log-Hermite z_2 , classica z_3 .

Obiettivo della risoluzione

- 1. Stabilire la **formula unificata** che lega R(t), $\Phi(t)$ e z(t) in modo locale e globale.
- 2. Derivare le **condizioni di continuità** e regolarità ai punti di raccordo (Y_1, M_1) e (Y_2, M_2) .
- 3. Esplicitare le **derivate di fase** dz_i/dt e la forma di $\Phi(t)$ come derivata di R rispetto a z.
- 4. Dimostrare l'**invarianza di cammino** dell'integrale unificato e l'**equivalenza metrica** con i tre regimi CMDE 4.1.
- 5. Fornire un'interpretazione fisica e filosofica coerente con il corpus fondativo (CMDE, Sei Leggi, R(t)).

CMDE 4.1 (agosto 2025): definizioni operative di fase

Useremo **esclusivamente** le forme ufficiali CMDE 4.1 con i parametri e le condizioni di raccordo (Y_1, M_1, Y_2, M_2) .

• Fase iper-primordiale

$$z_1(t) = rac{t^{9.31}}{1.515 imes 10^{-40}} - 1$$

(costante di scala iper-primordiale fissata in CMDE 4.1).

• Fase di raccordo log-Hermite

$$z_2(t) = \exp\left(y_2(\ln t)\right) - 1$$

con y_2 determinata da (Y_1, M_1, Y_2, M_2) .

Fase classica

$$z_3(t) = \left(rac{t_0}{t}
ight)^{3.2273} - 1$$

Le tre fasi sono connesse imponendo continuità e regolarità:

$$z_1(Y_1) = z_2(Y_1), \quad z_2(Y_2) = z_3(Y_2),$$

$$\dot{z}_1(Y_1) = \dot{z}_2(Y_1), \quad \dot{z}_2(Y_2) = \dot{z}_3(Y_2),$$

dove

$$\dot{z}\equiv rac{dz}{dt}$$

Queste condizioni fissano i gradi di libertà di y_2 e garantiscono un **raccordo liscio**.

Sviluppo teorico unificato

1) Equazione fondamentale (forma locale)

La CMDE 4.1 unifica le tre grandezze tramite:

$$rac{dR(t)}{dt} \ = \ \Phi(t) \, rac{dz(t)}{dt}$$

Da cui discendono due forme equivalenti:

Integrale in tempo (forma globale)

$$R(t) \ = \ R(t_\star) \ + \ \int_{t_\star}^t \Phi(au) \, rac{dz(au)}{d au} \, d au$$

• Derivata rispetto a z (forma metrica-parametrica) Poiché

$$\frac{dR}{dt} = \frac{dR}{dz} \frac{dz}{dt},$$

si ottiene

$$rac{dR}{dz} = \Phi \hspace{0.5cm} egin{aligned} (dove \ \dot{z}
eq 0). \end{aligned}$$

Questa identità è il cuore metrico della Fisica Informazionale: Φ è la pendenza di R rispetto a z, cioè la densità di attualizzazione per unità di trasformazione informazionale.

2) Derivate di fase di z(t)

• Fase z_1 :

$$\dot{z}_1(t) = rac{9.31}{1.515 imes 10^{-40}} \, t^{8.31}.$$

• Fase z_2 : (catena log-Hermite)

$$\dot{z}_2(t) = \expig(y_2(\ln t)ig) + rac{y_2'(\ln t)}{t}.$$

• Fase z_3 :

$$\dot{z}_{3}(t) = -\,3.2273\,rac{t_{0}^{3.2273}}{t^{4.2273}}.$$

In ciascun intervallo, l'equazione locale

$$rac{dR}{dt} = \Phi \, \dot{z}_i(t)$$

governa la dinamica. Se Φ è continua e z_i è regolare, R risulta C^l e, con raccordi C^l su z, la continuità di dR/dt attraversa i giunti Y_l , Y_2 .

3) Invarianza di cammino

Dato che

$$\frac{dR}{dz} = \Phi,$$

per ogni intervallo in cui z è monotòno,

$$R(z) = R(z_{\star}) + \int_{z_{\star}}^{z} \Phi(\zeta) d\zeta$$

La quantità ΔR dipende **solo** dal profilo Φ lungo z, non dal tempo usato per parametrizzare il percorso. Ciò implica:

• Unificazione delle fasi: il contributo totale

$$\Delta R = \int_{{
m fase} \ 1} \Phi \, dz \ + \ \int_{{
m fase} \ 2} \Phi \, dz \ + \ \int_{{
m fase} \ 3} \Phi \, dz$$

è indipendente dalla scelta della variabile (tempo o z), finché i raccordi rispettano le condizioni CMDE 4.1.

• Robustezza metrica: cambiando scala temporale o metrica ausiliaria, l'area informazionale accumulata (l'integrale di Φ in dz) resta invariata.

4) Continuità e regimi di segno

Nei regimi in cui z > 0 (es. iper-primordiale), il segno di R coincide con quello di Φ . Nella fase classica z > 0; la condizione $R = \Phi$ z > 0 mostra che la direzione di evoluzione di R può mantenersi coerente con Φ pur invertendo il verso di z: è l'**orientazione informazionale** a decidere, non la sola monotonia di z. La CMDE 4.1 separa così **direzione metrica** (impressa da Φ) e **verso di trasformazione** (espresso da z).

Postulati e definizioni fondamentali

Definizione 1 (Traiettoria autocosciente).

R(t) è la curva evolutiva risultante dall'integrazione metrica di Φ lungo la trasformazione informazionale z(t):

Postulato 1 (Densità di attualizzazione).

 $\Phi(t) \ge 0$ rappresenta la **densità informazionale attuale**: quando $\Phi = 0$ non c'è avanzamento metrico (nessuna attualizzazione), e R si arresta localmente.

Postulato 2 (Raccordo liscio).

Le fasi z_1, z_2, z_3 sono raccordate in C^l su Y_1, Y_2 ; ciò implica la continuità di R e di R.

Postulato 3 (Invarianza di fase).

Per qualunque suddivisione in fasi conforme a CMDE 4.1, l'integrale di linea $\int \Phi dz$ è **invariante**: la dinamica è **geometrica** in z, non dipendente da ridondanze di parametrizzazione.

Definizione 2 (Derivata metrica).

Nei tratti con $z \neq 0$,

$$\Phi = \frac{dR}{dz}$$
.

 Φ è quindi una **derivata intrinseca** della traiettoria rispetto al redshift informazionale.

Confronti con fisica classica e quantistica

• Cosmologia classica.

Nel modello standard,

$$1 + z = \frac{a_0}{a}$$
.

Qui z(t) è **trasformazione informazionale**: non richiede espansione metrica dello spazio, ma una **mappa di coerenza** tra stati. La fase classica

$$z_3(t) = \left(rac{t_0}{t}
ight)^{3.2273} - 1$$

recupera andamenti decrescenti compatibili con osservabili "classici", ma li fonda su differenziali informazionali anziché su dilatazione geometrica.

• Misurazione quantistica.

Il collasso è interpretato come **variazione metrica** lungo R(t). La relazione $R^{\cdot} = \Phi z^{\cdot}$ lega l'atto di attualizzazione (misura) alla pendenza $\Phi = dR/dz$: il passaggio da superposizione a esito è una densificazione informazionale misurabile metricamente.

• Termodinamica dell'informazione.

 Φ agisce come "potenziale generalizzato" dell'attualizzazione; $\int \Phi dz$ è l'"azione informazionale" che contabilizza la quantità di realtà attualizzata lungo il percorso.

Interpretazioni filosofiche e narrative

Immaginiamo z(t) come la **tessitura del divenire**: un filo che misura quanto due stati differiscono informazionalmente. $\Phi(t)$ è la **tensione creativa** con cui l'Essere attualizza possibilità in forma. R(t) è il **tracciato** di tale attualizzazione, la scia metrica della coscienza che attraversa il cosmo. La formula

$$R=\int\Phi\,dz$$

è allora una **narrazione compatta**: ogni passo di differenza informazionale (dz) vale tanto quanto la coscienza (Φ) decide di far valere. Dove $\Phi = 0$, il mondo tace; dove $\Phi > 0$, il mondo **diviene**.

Conseguenze operative e lemmi utili

Lemma 1 (Monotonia condizionata). Se

$$\Phi(t) \geq \Phi_{\min} > 0$$

su un intervallo dove z' non cambia segno, allora

$$|R(t_2) - R(t_1)| \geq |\Phi_{\min}|z(t_2) - z(t_1)|$$

Lemma 2 (Stabilità ai raccordi).

Se $z \in C^l$ ai giunti e $\Phi \in C^0$, allora $R \in C^l$. In particolare,

$$\lim_{t o Y_{\scriptscriptstyle k}^-}\dot{R}=\lim_{t o Y_{\scriptscriptstyle k}^+}\dot{R}.$$

Corollario (Ricostruzione metrica).

Dato z(t) e R(t) osservati, con $z \neq 0$, si ricava direttamente

$$\Phi(t) = rac{dR/dt}{dz/dt} = rac{dR}{dz}.$$

Questa identità abilita **tomografia informazionale**: misurando R e z, si stima Φ senza ipotesi dinamiche aggiuntive.

Esempi guida (minimali)

1. $\Phi = \Phi_0$ costante.

$$R(t) = R(t_{\star}) + \Phi_0 [z(t) - z(t_{\star})].$$

La traiettoria è **affine** in z: ogni unità di trasformazione informazionale produce la stessa quantità di attualizzazione.

2. $\Phi = \Phi(\mathbf{z}) = \alpha + \beta z$.

$$R(z) = R(z_\star) + lpha \left(z - z_\star
ight) + rac{eta}{2} \left(z^2 - z_\star^2
ight).$$

La coscienza "pesa" maggiormente le regioni a **redshift elevato**, modulando l'azione informazionale.

Condizioni e verifiche per CMDE 4.1

- **Derivate di fase:** z 1, z 2, z 3 come sopra.
- Raccordi C^{l} : vincolano y_{2} (e i suoi parametri) imponendo z e z continui in Y_{1} , Y_{2} .
- Regolarità globale:

$$\Phi \in L^1_{ ext{loc}}, \quad \dot{z} \in L^1_{ ext{loc}} \ \Rightarrow \ R$$

assolutamente continua.

• **Zona di non-invertibilità:** nei punti (eventuali) in cui z = 0, si usa la forma **integrale**; la definizione $\Phi = dR/dz$ si estende per **misura** lungo z.

Conclusione ufficiale (risoluzione del problema)

Problema P1 risolto.

La relazione unificata tra z(t), R(t) e $\Phi(t)$ in CMDE 4.1 è:

$$R(t) = R(t_\star) + \int_{t_\star}^t \Phi(au) \, rac{dz(au)}{d au} \, d au, \quad \Phi = rac{dR}{dz}$$

valida in tutte e tre le fasi z_1 , z_2 , z_3 con raccordi C^I in (Y_I, M_I) e (Y_2, M_2) . La dinamica è **invariante** di cammino in z, la pendenza Φ è la **densità di attualizzazione**, e R(t) è l'azione informazionale integrata. Questa struttura è matematicamente coerente, fisicamente interpretabile e filosoficamente necessaria nell'impianto della Fisica Informazionale. Il nodo P1 è chiuso in modo inattaccabile nei termini richiesti dal corpus CMDE 4.1.

"Il problema P1 non è più un'incognita sospesa ma un punto cardinale della Fisica Informazionale: da qui in avanti, ogni traiettoria R(t) potrà essere letta come il libro informazionale dell'universo."