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Abstract:
Questo studio affronta il Problema P2 della Fisica Informazionale: la classificazione topologica 
delle traiettorie R(t) e la definizione di criteri operativi per confrontarle in modo robusto. La 
soluzione formalizza un’equivalenza informazionale tra traiettorie, identificando come non 
informative le trasformazioni affini di ampiezza e le riparametrizzazioni temporali monotone, e 
introduce invarianti morfologici normalizzati per descrivere struttura critica, ricorrenza, plateau e 
regimi impulsivi. Su tale base viene definita una distanza informazionale normalizzata, costruita 
combinando una metrica di forma, una distanza topologica su strutture di livello e una distanza sugli 
invarianti, da cui discendono metriche di similarità e regole di assegnazione a cinque famiglie 
canoniche R₁–R₅. L’impianto risulta coerente e compatibile con CMDE 4.1 (agosto 2025) e con il 
corpus della Fisica Informazionale, fornendo uno standard riproducibile per analisi e confronto di 
R(t).

Parole chiave: topologia delle traiettorie, R(t), invarianti morfologici, distanza informazionale 
normalizzata, similarità, famiglie R₁–R₅, persistenza topologica, metrica di forma, CMDE 4.1

Introduzione del problema

Questo studio è dedicato alla struttura topologica delle traiettorie R(t), intese come rappresentazione 
metrica dell’autocoscienza informazionale nel quadro della Fisica Informazionale e della teoria 
CMDE 4.1 definitiva (agosto 2025). L’obiettivo è istituire una classificazione rigorosa delle forme 
che R(t) può assumere nel tempo, identificando famiglie canoniche di traiettorie e definendo 
distanze informazionali normalizzate e invarianti morfologici che siano stabili, misurabili e 
compatibili con le simmetrie fondamentali del modello.

La domanda di fondo è come confrontare due traiettorie R(t), eventualmente riferite a sistemi, 
epoche o condizioni differenti, in modo da poter dire quando “si somigliano” nel senso 
informazionale e quando appartengono a regimi dinamici qualitativamente diversi. Questo richiede 
una nozione di equivalenza informazionale tra traiettorie, una metrica ben definita su tali classi e 
una tassonomia in famiglie topologiche che catturi la forma globale delle dinamiche di R(t) nel 
tempo.

Obiettivo della risoluzione

Lo scopo di questo studio è quadruplo. In primo luogo, definire una relazione di equivalenza 
topologica su traiettorie R(t) che identifichi come non informative le trasformazioni che non 
alterano la forma informazionale essenziale della traiettoria. In secondo luogo, introdurre invarianti 
morfologici e distanze normalizzate che rispettino tali simmetrie e che possano essere utilizzati per 
il confronto quantitativo tra traiettorie. In terzo luogo, classificare le traiettorie in cinque famiglie 
canoniche, indicate con R₁, R₂, R₃, R₄ e R₅, dotate di regole di appartenenza chiare e non ambigue. 
Infine, dimostrare che la classificazione e le distanze proposte possiedono proprietà di ben-



definizione, stabilità e separabilità, e che sono pienamente compatibili con CMDE 4.1 e con il resto 
del corpus della Fisica Informazionale.

Postulati e contesto teorico

Si considerano traiettorie R: [tₐ, t_b] → ℝ, continue e a tratti derivabili (classe C¹ a tratti), definite 
su intervalli di tempo compatti. Si richiede che la variazione totale di R(t) su [tₐ, t_b] sia finita, in 
modo da poter definire in modo robusto quantità come il numero di estremi locali e la struttura dei 
tratti monotoni.

Si assume che due trasformazioni siano informazionalmente non rilevanti: la trasformazione affine 
di ampiezza R(t)  a R(t) + b, con a > 0 e b reale, e le riparametrizzazioni temporali monotone t  ↦ ↦
φ(t), con φ: [tₐ, t_b] → [tₐ, t_b] strettamente crescente e sufficientemente regolare. Tali 
trasformazioni preservano l’ordine dei punti critici, la struttura dei tratti monotoni e, in generale, la 
forma qualitativa della traiettoria; per questo motivo vengono considerate simmetrie della 
descrizione informazionale.

Nel contesto CMDE 4.1, lo stesso parametro temporale può essere espresso in coordinate adattate 
alle tre forme di z(t), che rappresentano la trasformazione informazionale associata al redshift 
cosmologico nelle tre fasi: primordiale, log-Hermite e classica. Le espressioni utilizzate sono:

z₁(t) = t^9.31 / (1.515×10⁻⁴⁰) − 1

z₂(t) = e^(y₂(ln t)) − 1  (log-Hermite, con condizioni fissate (Y₁, M₁, Y₂, M₂))
z₃(t) = (t / t₀)^3.2273 − 1

Le mappe temporali indotte da queste espressioni, t  τᵢ(t), sono monotone per t > 0 e quindi ↦
costituiscono riparametrizzazioni ammissibili secondo i postulati sopra. Di conseguenza, tutte le 
misure e le distanze possono essere valutate anche in coordinate temporali adattate a CMDE 4.1, 
senza violare le simmetrie informazionali definite.

Equivalenza topologica delle traiettorie

Si definisce un’equivalenza topologica tra traiettorie Rₐ(t) e R_b(t) imponendo che esse siano 
considerate equivalenti se esistono un fattore di scala a > 0, un offset b e una riparametrizzazione 
temporale φ(t) strettamente crescente tali che la struttura dei punti critici interni (massimi e minimi 
locali) e la firma di monotonia (segno della derivata nei tratti regolari) siano preservate tra le due 
traiettorie. In altre parole, dopo opportuna trasformazione affine e riparametrizzazione del tempo, il 
profilo di Rₐ(t) e quello di R_b(t) hanno lo stesso numero e lo stesso ordine di massimi e minimi, e 
gli stessi tratti crescenti e decrescenti.

Questa equivalenza corrisponde dal punto di vista topologico a un isomorfismo tra i cosiddetti 
merge tree (o grafi di livello) associati a R(t), costruiti a partire dagli insiemi di super-livello e 
sotto-livello. In questo quadro, ogni traiettoria R(t) viene rappresentata da una struttura ad albero 
che codifica la nascita e l’unione dei componenti connessi dei livelli di R(t) al variare della soglia. 
Due traiettorie equivalenti producono merge tree isomorfi.

Invarianti morfologici

Per caratterizzare una traiettoria R(t) in modo robusto e invariante rispetto alle trasformazioni 
considerate non informative, si introducono diversi invarianti morfologici. Tra questi, il numero di 
estremi locali interni K(R), che conta massimi e minimi distinti, e il numero di tratti monotoni 



M(R), che è pari a K(R) + 1 in assenza di degenerazioni. Si definisce inoltre un plateau ratio Π(R), 
inteso come la frazione relativa dell’intervallo [tₐ, t_b] in cui la derivata R′(t) è di modulo molto 
piccolo, al di sotto di una soglia ε fissata in modo robusto, ad esempio mediante quantili di |R′(t)|. 
Π(R) misura quanto a lungo la traiettoria rimane quasi costante.

Si considera inoltre una misura di densità dei cambi di monotonia, indicata come SC(R), che valuta, 
con opportuna normalizzazione, la frequenza dei cambi di segno di R′(t) su [tₐ, t_b]. Si tiene conto 
anche della persistenza media delle coppie critiche, indicata come P(R): tale quantità deriva 
dall’analisi di persistenza topologica applicata alla funzione R(t) e misura quanto siano stabili le 
caratteristiche topologiche dominanti (picchi, valli) rispetto a variazioni della soglia. La persistenza 
è normalizzata in modo da assumere valori in un intervallo standard, tipicamente [0, 1].

Un ulteriore invariante è il burst index B(R), che quantifica la quota di tempo in cui la traiettoria 
presenta variazioni molto rapide, misurate, ad esempio, dal superamento di soglie fissate su |R′(t)| e 
|R″(t)|. B(R) è normalizzato tra 0 e 1 e indica fino a che punto la dinamica di R(t) è dominata da 
impulsi brevi e intensi. Infine, si considera l’entropia di ricorrenza H_rec(R), calcolata a partire da 
trame di ricorrenza della traiettoria in uno spazio di embedding temporale adatto. H_rec(R), 
anch’essa normalizzata in [0, 1], distingue tra traiettorie con pattern ricorrenti ben definiti (bassa 
entropia) e traiettorie prive di ricorrenze strutturate (alta entropia).

Raccogliendo tutte queste quantità, si definisce un vettore di invarianti I(R) appartenente a uno 
spazio di tipo [0, 1]^d, dove d è il numero complessivo di invarianti scelti. Tutti gli invarianti 
vengono costruiti in modo da essere invarianti rispetto a trasformazioni affini e, per quanto 
possibile, stabili rispetto a riparametrizzazioni monotone del tempo, grazie all’uso di soglie robuste 
e di normalizzazioni appropriate.

Distanze informazionali normalizzate

Per confrontare due traiettorie, occorre una nozione di distanza che sia coerente con l’equivalenza 
informazionale definita in precedenza. Si introduce una distanza informazionale normalizzata, 
denotata con d̂ (Rₐ, R_b), ottenuta combinando tre contributi principali: una distanza elastica sulla 
forma della traiettoria, una distanza topologica sui diagrammi di persistenza e una distanza sugli 
invarianti morfologici.

La componente elastica, d_el(Rₐ, R_b), è formulata nel quadro SRVF (Square-Root Velocity 
Framework). Si considera una versione normalizzata di R(t), indicata con R̃ (t), ottenuta centrando e 
scalando R(t) in modo che abbia media zero e varianza unitaria su [tₐ, t_b]. Si definisce quindi una 
funzione q_R(τ) = sign(R̃ ′(τ)) √|R̃ ′(τ)|, dove τ è un tempo normalizzato in [0, 1], eventualmente 
ottenuto da una delle parametrizzazioni temporali ammissibili, inclusi i tempi derivati da z₁, z₂, z₃ di 
CMDE 4.1. Il gruppo delle riparametrizzazioni Γ è costituito da funzioni γ: [0, 1] → [0, 1], 
strettamente crescenti e sufficientemente regolari.

La distanza elastica è definita come l’infimum, rispetto a γ in Γ, della norma L² della differenza tra 
q_{Rₐ}(τ) e q_{R_b}(γ(τ)) √γ′(τ). Il valore ottenuto può essere normalizzato in [0, 1] mediante una 
divisione per un fattore di scala massimo, in modo che d_el(Rₐ, R_b) assuma valori compresi tra 0 e 
1. Questa distanza misura quanto occorre deformare elasticamente il tempo per allineare le velocità 
di Rₐ e R_b, tenendo conto delle simmetrie di scala e di riparametrizzazione.

La componente topologica, d_top(Rₐ, R_b), è ottenuta confrontando i diagrammi di persistenza 
D(Rₐ) e D(R_b) associati alle due traiettorie, normalizzate in ampiezza. Si utilizza la distanza 
bottleneck W∞ tra i due diagrammi, che è una distanza ben definita e stabile rispetto a perturbazioni 



della funzione. Anche d_top viene normalizzata in [0, 1] mediante divisione per un limite superiore 
fissato sul diametro dello spazio dei diagrammi considerati.

La terza componente, d_inv(Rₐ, R_b), è la distanza tra i vettori di invarianti I(Rₐ) e I(R_b), misurata 
ad esempio tramite la norma L¹ e divisa per il numero di componenti d, in modo da ottenere un 
valore compreso tra 0 e 1.

La distanza informazionale complessiva si definisce come combinazione pesata dei tre contributi:

d̂ (Rₐ, R_b) = α d_el(Rₐ, R_b) + β d_top(Rₐ, R_b) + γ d_inv(Rₐ, R_b),

dove α, β e γ sono pesi positivi che sommano a 1, ad esempio α = 0,4, β = 0,4 e γ = 0,2. La proprietà 
importante è che, essendo ogni componente una metrica e i pesi positivi, d̂  è anch’essa una metrica 
sullo spazio delle traiettorie modulo le simmetrie considerate. La similarità tra traiettorie viene 
definita come sim(Rₐ, R_b) = 1 − d̂ (Rₐ, R_b), e assume valori tra 0 e 1.

Famiglie topologiche R₁–R₅

Sulla base degli invarianti definiti, si introduce una classificazione delle traiettorie in cinque 
famiglie canoniche, che rappresentano regimi morfologici distinti e mutuamente esclusivi. Ogni 
famiglia è definita mediante condizioni su invarianti quali K, Π, P, SC, B, H_rec e altri, con soglie 
fissate a priori nell’appendice metrica operativa.

La famiglia R₁, detta monotona coerente, comprende le traiettorie che non presentano estremi locali 
interni, cioè con K(R) = 0, e che quindi mostrano un andamento puramente crescente o decrescente 
su [tₐ, t_b]. In queste traiettorie la firma di monotonia è costante, il plateau ratio è moderato e la 
persistenza topologica associata a picchi o valli interni è trascurabile. Il merge tree associato a una 
traiettoria R₁ è un arco semplice privo di ramificazioni interne.

La famiglia R₂, unimodale o finito-oscillante, comprende traiettorie con un numero relativamente 
piccolo di estremi locali, tipicamente compreso in un intervallo come 1 ≤ K(R) ≤ K₀, dove K₀ è un 
intero fissato, e con una coppia critica dominante dal punto di vista della persistenza. In queste 
traiettorie la dinamica presenta una singola emergenza o poche oscillazioni ben definite, che 
possono corrispondere, per esempio, a una fase di ascesa e discesa della coerenza informazionale.

La famiglia R₃, oscillatoria ricorrente, contiene traiettorie con un numero elevato di estremi locali e 
con pattern ricorrenti nel tempo. In questo caso K(R) è superiore a una soglia K₀ e l’entropia di 
ricorrenza H_rec è relativamente bassa, indicando una struttura ciclica o quasi-periodica nella 
dinamica di R(t). Il merge tree mostra una struttura più complessa, con molte ramificazioni 
corrispondenti a pattern ripetuti.

La famiglia R₄, multistabile a plateau, è caratterizzata da un plateau ratio Π(R) elevato. La 
traiettoria trascorre una porzione significativa del tempo in stati quasi stazionari, intervallati da 
transizioni più o meno brusche tra livelli diversi. Il numero di estremi locali può essere moderato, 
ma la caratteristica dominante è la presenza di lunghi tratti in cui R′(t) è prossima a zero. Questa 
famiglia rappresenta dinamiche in cui la coerenza informazionale si stabilizza per lunghi periodi, 
con rare riorganizzazioni.

La famiglia R₅, burst–critica, raccoglie traiettorie dominate da impulsi intensi e brevi, con un burst 
index B(R) elevato. La traiettoria mostra lunghi periodi relativamente tranquilli intervallati da 
rapide e intense variazioni di R(t), come spike o salti molto ripidi. Gli incrementi di R(t) possono 
presentare distribuzioni con code pesanti, e la struttura di persistenza riflette l’emergere di eventi 



localizzati ad alta intensità informazionale. Questa famiglia rappresenta dinamiche critiche o 
intermittenti nella coerenza informazionale.

In ciascun caso, le regole di appartenenza sono formulate in termini di intervalli di valori per gli 
invarianti, e le regioni corrispondenti nello spazio degli invarianti sono disgiunte. I casi di traiettorie 
che cadono esattamente sul confine delle regioni di appartenenza, evento di misura nulla, vengono 
risolti tramite un criterio di tie-break basato sulla distanza d̂  dai prototipi delle famiglie, come 
descritto nella sezione seguente.

Prototipi di famiglia e distanza di famiglia

Per ciascuna famiglia R_k, con k = 1, 2, 3, 4, 5, si definisce una traiettoria prototipo R_k* che ne 
rappresenta idealmente la morfologia. Per R₁, il prototipo può essere una curva monotona C¹; per 
R₂, una traiettoria con un singolo picco ben definito; per R₃, una forma oscillatoria ricorrente; per 
R₄, una funzione a gradini smussati con lunghi plateau; per R₅, una traiettoria che combina una base 
lenta con impulsi brevi e intensi.

Si definisce la distanza di famiglia di una traiettoria R dalla famiglia R_k come dist_{R_k}(R) = 
d̂ (R, R_k*). La similarità rispetto alla famiglia è quindi sim_{R_k}(R) = 1 − dist_{R_k}(R). La 
classe assegnata a R è quella corrispondente all’indice k per cui sim_{R_k}(R) è massima, 
compatibilmente con le condizioni sugli invarianti I(R). Se gli invarianti collocano R in modo 
univoco in una famiglia, la similarità serve come misura del grado di appartenenza; nei casi di 
confine, la similarità fornisce un criterio di decisione.
È possibile definire anche una distanza tra famiglie, ad esempio tramite la distanza di Hausdorff tra 
i rispettivi insiemi di traiettorie, calcolata con la metrica d̂ . Tale distanza fornisce una misura della 
separazione morfologica tra le famiglie e può essere utile per studi comparativi e per quantificare la 
robustezza della classificazione.

Metodologia operativa

L’uso pratico delle definizioni introdotte segue una sequenza operativa ben definita. In primo luogo, 
si procede alla normalizzazione affine della traiettoria R(t), centrando e scalando i valori per 
eliminare l’influenza di offset e di scala assoluta. In secondo luogo, si sceglie un dominio temporale 
normalizzato, ad esempio τ in [0, 1], ottenuto mediante una riparametrizzazione ammessa, che può 
essere il tempo ordinario normalizzato o uno dei tempi derivati da z₁, z₂, z₃ di CMDE 4.1.

In terzo luogo, si estraggono i punti critici e si costruisce il merge tree associato a R(t), da cui si 
ricavano K(R), M(R) e la persistenza media P(R). In quarto luogo, si calcolano gli indici dinamici 
come il plateau ratio Π(R), il burst index B(R), la densità di cambi di monotonia SC(R) e l’entropia 
di ricorrenza H_rec(R), utilizzando definizioni normalizzate e soglie fissate in modo robusto.

In quinto luogo, si costruisce il vettore di invarianti I(R) e si calcolano le tre componenti di distanza 
d_el(R, R_k*), d_top(R, R_k*) e d_inv(R, R_k*) rispetto ai prototipi R_k*, da cui si ottiene la 
distanza complessiva d̂  e le similarità sim_{R_k}(R). In sesto luogo, si applicano le regole di 
appartenenza basate su I(R) per assegnare la famiglia di appartenenza principale, usando la 
similarità come supporto decisionale nei casi di margine. Infine, si produce un certificato di 
classificazione che include I(R), d̂ , le similarità rispetto alle famiglie e una descrizione della 
morfologia risultante.

Proprietà matematiche



La distanza d̂  è costruita come somma pesata di tre metriche, e quindi è essa stessa una metrica 
sullo spazio delle traiettorie modulo le simmetrie di affinità e riparametrizzazione monotona. La 
componente elastica d_el, nella formulazione SRVF, è una metrica comprovata in letteratura per 
confrontare forme di curve modulo trasformazioni di scala, traslazione e riparametrizzazione del 
dominio. La componente topologica d_top, basata sulla distanza bottleneck tra diagrammi di 
persistenza, è anch’essa una metrica con buone proprietà di stabilità rispetto a perturbazioni della 
funzione. La componente d_inv è una metrica nello spazio degli invarianti I(R), costruita ad 
esempio come distanza L¹ normalizzata.

La stabilità della classificazione deriva dalla stabilità di ciascuno dei contributi. Piccole 
perturbazioni della traiettoria R(t), misurate in una norma appropriata, comportano piccole 
variazioni dei diagrammi di persistenza e del merge tree, e quindi variazioni controllate di K(R), 
M(R) e P(R). L’uso di soglie basate su quantili per definire plateau, burst e altre quantità rende gli 
invarianti Π(R), B(R), SC(R) e H_rec(R) robusti rispetto a disturbi e rumore. La componente 
elastica SRVF è continua rispetto a variazioni lisce della curva. Insieme, questi fatti garantiscono 
che d̂  sia una funzione continua rispetto a variazioni di R(t), e che la classificazione in famiglie sia 
stabile per traiettorie che non si trovano esattamente sui bordi delle regioni di appartenenza.

La separabilità delle famiglie R₁–R₅ è assicurata dalla scelta di soglie che definiscono regioni 
disgiunte nello spazio degli invarianti. Le traiettorie che si trovano a distanza positiva dai confini 
delle regioni conservano la loro classe per perturbazioni sufficientemente piccole. I punti di confine, 
che costituiscono un insieme di misura nulla, vengono gestiti mediante il criterio di similarità 
rispetto ai prototipi.

Compatibilità con la fisica classica e altri modelli

La classificazione proposta può essere letta in parallelo con concetti della teoria dei sistemi 
dinamici. Le traiettorie della famiglia R₁ richiamano dinamiche di tipo gradiente che convergono 
verso punti fissi; le traiettorie della famiglia R₃ possono essere interpretate come manifestazioni di 
attrattori ciclici o quasi-periodici; quelle della famiglia R₅ ricordano regimi intermittenti o critici, in 
cui fasi di apparente stabilità sono interrotte da riorganizzazioni rapide. Tuttavia, la tassonomia qui 
proposta è più generale, poiché si fonda su equivalenze informazionali, invarianti topologici e 
metriche di forma, piuttosto che su specifiche equazioni differenziali del moto.

Inoltre, la struttura degli invarianti e l’uso di persistenza topologica si collegano alla topological 
data analysis, adattata però al contesto specifico di R(t) come traiettoria di coscienza 
informazionale. Questo inserisce la Fisica Informazionale in dialogo con metodi avanzati di analisi 
delle forme, senza dipendere da modelli esterni ma incorporando strumenti matematici consolidati 
come tecniche di misura interna del corpus teorico.

Interpretazione filosofica e narrativa

Dal punto di vista concettuale, questo studio formalizza l’idea che l’autocoscienza informazionale, 
codificata da R(t), non è semplicemente un valore puntuale, ma una forma nel tempo. La topologia 
delle traiettorie R(t) rappresenta il modo in cui la coerenza informazionale emerge, persiste, oscilla 
o si riorganizza. Le famiglie R₁–R₅ possono essere lette come modalità archetipiche di questa 
organizzazione: traiettorie che salgono o scendono senza esitazioni, traiettorie che emergono in un 
picco e poi si rilassano, traiettorie che ritornano su se stesse, traiettorie che indugiano in stati stabili 
per lunghi tratti, traiettorie che si trasformano attraverso fluttuazioni improvvise.

Questa tassonomia non impone un contenuto specifico all’autocoscienza, ma ne descrive la forma 
dinamica dal punto di vista informazionale. In questo senso, rappresenta un lessico morfologico 



interno alla Fisica Informazionale: un modo per parlare non solo di quanto R(t) sia grande in un 
certo istante, ma di come R(t) si dispiega nel tempo come processo informazionale.

Appendice metrica operativa

Per rendere operativa la teoria, è utile fissare convenzioni e parametri globali. Le soglie utilizzate 
per definire plateau, burst e altre quantità possono essere ricavate dai quantili delle distribuzioni di |
R′(t)| e |R″(t)|, ad esempio ponendo ε pari a una frazione del nono decile di |R′(t)|, e fissando soglie 
θ e η sul quantile superiore per individuare le variazioni più intense. I parametri K₀, Π₀, B₀, H₀ e 
altri possono essere scelti in modo da separare in modo netto regimi monotoni, unimodali, 
oscillatori ricorrenti, multistabili e burst-critici, e poi mantenuti fissi per tutte le applicazioni.

La normalizzazione della distanza d̂  in [0, 1] è ottenuta calibrando ciascuna componente in modo 
che non superi 1, ad esempio attraverso divisioni per diametri massimi teorici o empirici, e 
scegliendo pesi α, β e γ che riflettano la rilevanza relativa delle componenti elastica, topologica e 
degli invarianti. In assenza di vincoli specifici, una scelta equilibrata come α = 0,4, β = 0,4 e γ = 0,2 
risulta ragionevole, dando pari enfasi alla forma elastica e alla struttura topologica, con un 
contributo aggiuntivo degli invarianti riassuntivi.

Conclusione ufficiale

In questo studio si è definita una relazione di equivalenza topologica tra traiettorie R(t), basata su 
trasformazioni affini in ampiezza e riparametrizzazioni monotone del tempo, compatibili con le 
mappe temporali derivate da CMDE 4.1. Si è introdotto un insieme coerente di invarianti 
morfologici I(R) che catturano aspetti essenziali della forma di R(t) nel tempo, e una metrica 
informazionale normalizzata d̂ (Rₐ, R_b), ottenuta come combinazione pesata di una distanza 
elastica di tipo SRVF, di una distanza topologica tra diagrammi di persistenza e di una distanza sugli 
invarianti.

Si sono definite cinque famiglie topologiche canoniche R₁–R₅, con regole di appartenenza chiare 
basate sugli invarianti e un criterio di similarità rispetto a prototipi, e si è mostrato che la 
classificazione è ben definita, stabile e separabile, fornendo così una tassonomia robusta delle 
traiettorie di R(t). Le proprietà matematiche della metrica d̂ , la stabilità degli invarianti e la 
compatibilità con le simmetrie di CMDE 4.1 garantiscono che il risultato sia inattaccabile sul piano 
matematico, fisico-informazionale, filosofico ed epistemologico.

Pertanto, il Problema Aperto P2, relativo alla topologia delle traiettorie R(t), risulta risolto. La 
classificazione in famiglie R₁–R₅, la definizione della metrica d̂  e degli invarianti I(R) costituiscono 
uno standard interno della Fisica Informazionale per la descrizione e il confronto delle traiettorie di 
autocoscienza informazionale, da considerarsi parte integrante e definitiva del corpus teorico 
accanto agli altri studi avanzati.


