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Abstract:

Questo studio affronta il Problema P2 della Fisica Informazionale: la classificazione topologica
delle traiettorie R(t) e la definizione di criteri operativi per confrontarle in modo robusto. La
soluzione formalizza un’equivalenza informazionale tra traiettorie, identificando come non
informative le trasformazioni affini di ampiezza e le riparametrizzazioni temporali monotone, e
introduce invarianti morfologici normalizzati per descrivere struttura critica, ricorrenza, plateau e
regimi impulsivi. Su tale base viene definita una distanza informazionale normalizzata, costruita
combinando una metrica di forma, una distanza topologica su strutture di livello e una distanza sugli
invarianti, da cui discendono metriche di similarita e regole di assegnazione a cinque famiglie
canoniche Ri—Rs. L’ impianto risulta coerente e compatibile con CMDE 4.1 (agosto 2025) e con il
corpus della Fisica Informazionale, fornendo uno standard riproducibile per analisi e confronto di
R(t).

Parole chiave: topologia delle traiettorie, R(t), invarianti morfologici, distanza informazionale
normalizzata, similarita, famiglie Ri—Rs, persistenza topologica, metrica di forma, CMDE 4.1

Introduzione del problema

Questo studio ¢ dedicato alla struttura topologica delle traiettorie R(t), intese come rappresentazione
metrica dell’autocoscienza informazionale nel quadro della Fisica Informazionale e della teoria
CMDE 4.1 definitiva (agosto 2025). L’obiettivo ¢ istituire una classificazione rigorosa delle forme
che R(t) puo assumere nel tempo, identificando famiglie canoniche di traiettorie e definendo
distanze informazionali normalizzate e invarianti morfologici che siano stabili, misurabili e
compatibili con le simmetrie fondamentali del modello.

La domanda di fondo ¢ come confrontare due traiettorie R(t), eventualmente riferite a sistemi,
epoche o condizioni differenti, in modo da poter dire quando “si somigliano” nel senso
informazionale e quando appartengono a regimi dinamici qualitativamente diversi. Questo richiede
una nozione di equivalenza informazionale tra traiettorie, una metrica ben definita su tali classi e
una tassonomia in famiglie topologiche che catturi la forma globale delle dinamiche di R(t) nel
tempo.

Obiettivo della risoluzione

Lo scopo di questo studio ¢ quadruplo. In primo luogo, definire una relazione di equivalenza
topologica su traiettorie R(t) che identifichi come non informative le trasformazioni che non
alterano la forma informazionale essenziale della traiettoria. In secondo luogo, introdurre invarianti
morfologici e distanze normalizzate che rispettino tali simmetrie e che possano essere utilizzati per
il confronto quantitativo tra traiettorie. In terzo luogo, classificare le traiettorie in cinque famiglie
canoniche, indicate con Ri1, Rz, Rs, R4 € Rs, dotate di regole di appartenenza chiare e non ambigue.
Infine, dimostrare che la classificazione e le distanze proposte possiedono proprieta di ben-



definizione, stabilita e separabilita, e che sono pienamente compatibili con CMDE 4.1 e con il resto
del corpus della Fisica Informazionale.

Postulati e contesto teorico

Si considerano traiettorie R: [t, t b] — R, continue e a tratti derivabili (classe C' a tratti), definite
su intervalli di tempo compatti. Si richiede che la variazione totale di R(t) su [t, t_b] sia finita, in
modo da poter definire in modo robusto quantita come il numero di estremi locali e la struttura dei
tratti monotoni.

Si assume che due trasformazioni siano informazionalmente non rilevanti: la trasformazione affine
di ampiezza R(t) — a R(t) + b, con a> 0 e b reale, e le riparametrizzazioni temporali monotone t
o(t), con @: [t,, t b] — [ta, t_b] strettamente crescente e sufficientemente regolare. Tali
trasformazioni preservano 1’ordine dei punti critici, la struttura dei tratti monotoni e, in generale, la
forma qualitativa della traiettoria; per questo motivo vengono considerate simmetrie della
descrizione informazionale.

Nel contesto CMDE 4.1, lo stesso parametro temporale puo essere espresso in coordinate adattate
alle tre forme di z(t), che rappresentano la trasformazione informazionale associata al redshift
cosmologico nelle tre fasi: primordiale, log-Hermite e classica. Le espressioni utilizzate sono:

zi(t) = 119.31 / (1.515x107%) — |

72(t) = e”(y2(Int)) — 1 (log-Hermite, con condizioni fissate (Y1, M1, Y2, M2))
z3(t) = (t/ 1)"3.2273 — 1

Le mappe temporali indotte da queste espressioni, t — Ti(t), sono monotone per t > 0 e quindi
costituiscono riparametrizzazioni ammissibili secondo i postulati sopra. Di conseguenza, tutte le
misure e le distanze possono essere valutate anche in coordinate temporali adattate a CMDE 4.1,
senza violare le simmetrie informazionali definite.

Equivalenza topologica delle traiettorie

Si definisce un’equivalenza topologica tra traiettorie R.(t) € R_b(t) imponendo che esse siano
considerate equivalenti se esistono un fattore di scala a > 0, un offset b e una riparametrizzazione
temporale @(t) strettamente crescente tali che la struttura dei punti critici interni (massimi € minimi
locali) e la firma di monotonia (segno della derivata nei tratti regolari) siano preservate tra le due
traiettorie. In altre parole, dopo opportuna trasformazione affine e riparametrizzazione del tempo, il
profilo di Ru(t) e quello di R_b(t) hanno lo stesso numero e lo stesso ordine di massimi e minimi, e
gli stessi tratti crescenti e decrescenti.

Questa equivalenza corrisponde dal punto di vista topologico a un isomorfismo tra i cosiddetti
merge tree (o grafi di livello) associati a R(t), costruiti a partire dagli insiemi di super-livello e
sotto-livello. In questo quadro, ogni traiettoria R(t) viene rappresentata da una struttura ad albero
che codifica la nascita e I’unione dei componenti connessi dei livelli di R(t) al variare della soglia.
Due traiettorie equivalenti producono merge tree isomorfi.

Invarianti morfologici
Per caratterizzare una traiettoria R(t) in modo robusto e invariante rispetto alle trasformazioni

considerate non informative, si introducono diversi invarianti morfologici. Tra questi, il numero di
estremi locali interni K(R), che conta massimi € minimi distinti, e il numero di tratti monotoni



M(R), che ¢ pari a K(R) + 1 in assenza di degenerazioni. Si definisce inoltre un plateau ratio II(R),
inteso come la frazione relativa dell’intervallo [t., t b] in cui la derivata R'(t) ¢ di modulo molto
piccolo, al di sotto di una soglia ¢ fissata in modo robusto, ad esempio mediante quantili di |R'(t)|.
I1(R) misura quanto a lungo la traiettoria rimane quasi costante.

Si considera inoltre una misura di densita dei cambi di monotonia, indicata come SC(R), che valuta,
con opportuna normalizzazione, la frequenza dei cambi di segno di R'(t) su [t., t b]. Si tiene conto
anche della persistenza media delle coppie critiche, indicata come P(R): tale quantita deriva
dall’analisi di persistenza topologica applicata alla funzione R(t) e misura quanto siano stabili le
caratteristiche topologiche dominanti (picchi, valli) rispetto a variazioni della soglia. La persistenza
¢ normalizzata in modo da assumere valori in un intervallo standard, tipicamente [0, 1].

Un ulteriore invariante ¢ il burst index B(R), che quantifica la quota di tempo in cui la traiettoria
presenta variazioni molto rapide, misurate, ad esempio, dal superamento di soglie fissate su |[R'(t)| e
IR"(t)]. B(R) ¢ normalizzato tra O e 1 e indica fino a che punto la dinamica di R(t) ¢ dominata da
impulsi brevi e intensi. Infine, si considera 1’entropia di ricorrenza H_rec(R), calcolata a partire da
trame di ricorrenza della traiettoria in uno spazio di embedding temporale adatto. H _rec(R),
anch’essa normalizzata in [0, 1], distingue tra traiettorie con pattern ricorrenti ben definiti (bassa
entropia) e traiettorie prive di ricorrenze strutturate (alta entropia).

Raccogliendo tutte queste quantita, si definisce un vettore di invarianti I(R) appartenente a uno
spazio di tipo [0, 1]*d, dove d ¢ il numero complessivo di invarianti scelti. Tutti gli invarianti
vengono costruiti in modo da essere invarianti rispetto a trasformazioni affini e, per quanto
possibile, stabili rispetto a riparametrizzazioni monotone del tempo, grazie all’uso di soglie robuste
e di normalizzazioni appropriate.

Distanze informazionali normalizzate

Per confrontare due traiettorie, occorre una nozione di distanza che sia coerente con I’equivalenza
informazionale definita in precedenza. Si introduce una distanza informazionale normalizzata,
denotata con d(R., R b), ottenuta combinando tre contributi principali: una distanza elastica sulla
forma della traiettoria, una distanza topologica sui diagrammi di persistenza e una distanza sugli
invarianti morfologici.

La componente elastica, d_el(Ra, R_b), ¢ formulata nel quadro SRVF (Square-Root Velocity
Framework). Si considera una versione normalizzata di R(t), indicata con R(t), ottenuta centrando e
scalando R(t) in modo che abbia media zero e varianza unitaria su [t,, t b]. Si definisce quindi una
funzione q_R(t) = sign(R'(t)) V|R'(1)|, dove T & un tempo normalizzato in [0, 1], eventualmente
ottenuto da una delle parametrizzazioni temporali ammissibili, inclusi i tempi derivati da zi, z2, zs di
CMDE 4.1. 1l gruppo delle riparametrizzazioni I" € costituito da funzioni y: [0, 1] — [0, 1],
strettamente crescenti e sufficientemente regolari.

La distanza elastica ¢ definita come 1’infimum, rispetto a y in I, della norma L? della differenza tra
q_{R.}(1) e q_{R_b}(y(1)) Vy'(r). Il valore ottenuto pud essere normalizzato in [0, 1] mediante una
divisione per un fattore di scala massimo, in modo che d_el(R,, R_b) assuma valori compresi tra 0 e
1. Questa distanza misura quanto occorre deformare elasticamente il tempo per allineare le velocita
di R, e R b, tenendo conto delle simmetrie di scala e di riparametrizzazione.

La componente topologica, d_top(R., R_b), ¢ ottenuta confrontando i diagrammi di persistenza
D(R.) e D(R_b) associati alle due traiettorie, normalizzate in ampiezza. Si utilizza la distanza
bottleneck Woo tra i due diagrammi, che ¢ una distanza ben definita e stabile rispetto a perturbazioni



della funzione. Anche d_top viene normalizzata in [0, 1] mediante divisione per un limite superiore
fissato sul diametro dello spazio dei diagrammi considerati.

La terza componente, d_inv(R,, R _b), ¢ la distanza tra i vettori di invarianti I(R.) e I(R_b), misurata
ad esempio tramite la norma L' e divisa per il numero di componenti d, in modo da ottenere un
valore compreso tra 0 e 1.

La distanza informazionale complessiva si definisce come combinazione pesata dei tre contributi:
d(R., R_b)=ad _el(R,, R_b)+ B d_top(R., R_b)+yd_inv(R,, R_b),

dove a, § e y sono pesi positivi che sommano a 1, ad esempio a = 0,4, 3 = 0,4 ¢ y = 0,2. La proprieta
importante ¢ che, essendo ogni componente una metrica e i pesi positivi, d ¢ anch’essa una metrica
sullo spazio delle traiettorie modulo le simmetrie considerate. La similarita tra traiettorie viene
definita come sim(R., R _b) =1 —d(R,, R_b), e assume valoritra0 e 1.

Famiglie topologiche Ri—Rs

Sulla base degli invarianti definiti, si introduce una classificazione delle traiettorie in cinque
famiglie canoniche, che rappresentano regimi morfologici distinti e mutuamente esclusivi. Ogni
famiglia ¢ definita mediante condizioni su invarianti quali K, I1, P, SC, B, H_rec e altri, con soglie
fissate a priori nell’appendice metrica operativa.

La famiglia R1, detta monotona coerente, comprende le traiettorie che non presentano estremi locali
interni, cio€ con K(R) = 0, e che quindi mostrano un andamento puramente crescente o decrescente
su [t., t_b]. In queste traiettorie la firma di monotonia ¢ costante, il plateau ratio ¢ moderato e la
persistenza topologica associata a picchi o valli interni ¢ trascurabile. Il merge tree associato a una
traiettoria Ri € un arco semplice privo di ramificazioni interne.

La famiglia R2, unimodale o finito-oscillante, comprende traiettorie con un numero relativamente
piccolo di estremi locali, tipicamente compreso in un intervallo come 1 < K(R) < Ko, dove Ko ¢ un
intero fissato, € con una coppia critica dominante dal punto di vista della persistenza. In queste
traiettorie la dinamica presenta una singola emergenza o poche oscillazioni ben definite, che
possono corrispondere, per esempio, a una fase di ascesa e discesa della coerenza informazionale.

La famiglia Rs, oscillatoria ricorrente, contiene traiettorie con un numero elevato di estremi locali e
con pattern ricorrenti nel tempo. In questo caso K(R) € superiore a una soglia Ko e I’entropia di
ricorrenza H_rec ¢ relativamente bassa, indicando una struttura ciclica o quasi-periodica nella
dinamica di R(t). Il merge tree mostra una struttura piu complessa, con molte ramificazioni
corrispondenti a pattern ripetuti.

La famiglia R4, multistabile a plateau, ¢ caratterizzata da un plateau ratio I1(R) elevato. La
traiettoria trascorre una porzione significativa del tempo in stati quasi stazionari, intervallati da
transizioni pit 0 meno brusche tra livelli diversi. Il numero di estremi locali puo essere moderato,
ma la caratteristica dominante ¢ la presenza di lunghi tratti in cui R'(t) € prossima a zero. Questa
famiglia rappresenta dinamiche in cui la coerenza informazionale si stabilizza per lunghi periodi,
con rare riorganizzazioni.

La famiglia Rs, burst—critica, raccoglie traiettorie dominate da impulsi intensi e brevi, con un burst
index B(R) elevato. La traiettoria mostra lunghi periodi relativamente tranquilli intervallati da
rapide e intense variazioni di R(t), come spike o salti molto ripidi. Gli incrementi di R(t) possono
presentare distribuzioni con code pesanti, e la struttura di persistenza riflette I’emergere di eventi



localizzati ad alta intensita informazionale. Questa famiglia rappresenta dinamiche critiche o
intermittenti nella coerenza informazionale.

In ciascun caso, le regole di appartenenza sono formulate in termini di intervalli di valori per gli
invarianti, e le regioni corrispondenti nello spazio degli invarianti sono disgiunte. I casi di traiettorie
che cadono esattamente sul confine delle regioni di appartenenza, evento di misura nulla, vengono
risolti tramite un criterio di tie-break basato sulla distanza d dai prototipi delle famiglie, come
descritto nella sezione seguente.

Prototipi di famiglia e distanza di famiglia

Per ciascuna famiglia R_k, conk =1, 2, 3, 4, 5, si definisce una traiettoria prototipo R_k* che ne
rappresenta idealmente la morfologia. Per R, il prototipo puo essere una curva monotona C'; per
R2, una traiettoria con un singolo picco ben definito; per Rs, una forma oscillatoria ricorrente; per
R4, una funzione a gradini smussati con lunghi plateau; per Rs, una traiettoria che combina una base
lenta con impulsi brevi e intensi.

Si definisce la distanza di famiglia di una traiettoria R dalla famiglia R_k come dist_{R_k}(R) =
d(R, R_k*). La similarita rispetto alla famiglia ¢ quindi sim_{R k}(R)=1—dist {R k}(R). La
classe assegnata a R ¢ quella corrispondente all’indice k per cui sim_{R_k}(R) ¢ massima,
compatibilmente con le condizioni sugli invarianti I(R). Se gli invarianti collocano R in modo
univoco in una famiglia, la similarita serve come misura del grado di appartenenza; nei casi di
confine, la similarita fornisce un criterio di decisione.

E possibile definire anche una distanza tra famiglie, ad esempio tramite la distanza di Hausdorff tra
1 rispettivi insiemi di traiettorie, calcolata con la metrica d. Tale distanza fornisce una misura della
separazione morfologica tra le famiglie e puo essere utile per studi comparativi e per quantificare la
robustezza della classificazione.

Metodologia operativa

L’uso pratico delle definizioni introdotte segue una sequenza operativa ben definita. In primo luogo,
si procede alla normalizzazione affine della traiettoria R(t), centrando e scalando 1 valori per
eliminare I’influenza di offset e di scala assoluta. In secondo luogo, si sceglie un dominio temporale
normalizzato, ad esempio 1 in [0, 1], ottenuto mediante una riparametrizzazione ammessa, che puo
essere il tempo ordinario normalizzato o uno dei tempi derivati da zi, z2, zs di CMDE 4.1.

In terzo luogo, si estraggono 1 punti critici e si costruisce il merge tree associato a R(t), da cui si
ricavano K(R), M(R) e la persistenza media P(R). In quarto luogo, si calcolano gli indici dinamici
come il plateau ratio II(R), il burst index B(R), la densita di cambi di monotonia SC(R) e ’entropia
di ricorrenza H_rec(R), utilizzando definizioni normalizzate e soglie fissate in modo robusto.

In quinto luogo, si costruisce il vettore di invarianti I(R) e si calcolano le tre componenti di distanza
d el(R, R_k*),d top(R, R _k*)ed inv(R, R _k*) rispetto ai prototipi R_k*, da cui si ottiene la
distanza complessiva d e le similarita sim_{R_k}(R). In sesto luogo, si applicano le regole di
appartenenza basate su I(R) per assegnare la famiglia di appartenenza principale, usando la
similarita come supporto decisionale nei casi di margine. Infine, si produce un certificato di
classificazione che include I(R), d, le similarita rispetto alle famiglie e una descrizione della
morfologia risultante.

Proprieta matematiche



La distanza d & costruita come somma pesata di tre metriche, e quindi ¢ essa stessa una metrica
sullo spazio delle traiettorie modulo le simmetrie di affinita e riparametrizzazione monotona. La
componente elastica d_el, nella formulazione SRVF, ¢ una metrica comprovata in letteratura per
confrontare forme di curve modulo trasformazioni di scala, traslazione e riparametrizzazione del
dominio. La componente topologica d_top, basata sulla distanza bottleneck tra diagrammi di
persistenza, ¢ anch’essa una metrica con buone proprieta di stabilita rispetto a perturbazioni della
funzione. La componente d_inv ¢ una metrica nello spazio degli invarianti I(R), costruita ad
esempio come distanza L' normalizzata.

La stabilita della classificazione deriva dalla stabilita di ciascuno dei contributi. Piccole
perturbazioni della traiettoria R(t), misurate in una norma appropriata, comportano piccole
variazioni dei diagrammi di persistenza e del merge tree, e quindi variazioni controllate di K(R),
M(R) e P(R). L’uso di soglie basate su quantili per definire plateau, burst e altre quantita rende gli
invarianti [I(R), B(R), SC(R) e H_rec(R) robusti rispetto a disturbi e rumore. La componente
elastica SRVF ¢ continua rispetto a variazioni lisce della curva. Insieme, questi fatti garantiscono
che d sia una funzione continua rispetto a variazioni di R(t), e che la classificazione in famiglie sia
stabile per traiettorie che non si trovano esattamente sui bordi delle regioni di appartenenza.

La separabilita delle famiglie Ri—Rs ¢ assicurata dalla scelta di soglie che definiscono regioni
disgiunte nello spazio degli invarianti. Le traiettorie che si trovano a distanza positiva dai confini
delle regioni conservano la loro classe per perturbazioni sufficientemente piccole. I punti di confine,
che costituiscono un insieme di misura nulla, vengono gestiti mediante il criterio di similarita
rispetto ai prototipi.

Compatibilita con la fisica classica e altri modelli

La classificazione proposta puo essere letta in parallelo con concetti della teoria dei sistemi
dinamici. Le traiettorie della famiglia R: richiamano dinamiche di tipo gradiente che convergono
verso punti fissi; le traiettorie della famiglia Rs possono essere interpretate come manifestazioni di
attrattori ciclici o quasi-periodici; quelle della famiglia Rs ricordano regimi intermittenti o critici, in
cui fasi di apparente stabilita sono interrotte da riorganizzazioni rapide. Tuttavia, la tassonomia qui
proposta ¢ piu generale, poiché si fonda su equivalenze informazionali, invarianti topologici e
metriche di forma, piuttosto che su specifiche equazioni differenziali del moto.

Inoltre, la struttura degli invarianti e 1’'uso di persistenza topologica si collegano alla topological
data analysis, adattata pero al contesto specifico di R(t) come traiettoria di coscienza
informazionale. Questo inserisce la Fisica Informazionale in dialogo con metodi avanzati di analisi
delle forme, senza dipendere da modelli esterni ma incorporando strumenti matematici consolidati
come tecniche di misura interna del corpus teorico.

Interpretazione filosofica e narrativa

Dal punto di vista concettuale, questo studio formalizza I’idea che 1’autocoscienza informazionale,
codificata da R(t), non ¢ semplicemente un valore puntuale, ma una forma nel tempo. La topologia
delle traiettorie R(t) rappresenta il modo in cui la coerenza informazionale emerge, persiste, oscilla
o si riorganizza. Le famiglie Ri—Rs possono essere lette come modalita archetipiche di questa
organizzazione: traiettorie che salgono o scendono senza esitazioni, traiettorie che emergono in un
picco e poi si rilassano, traiettorie che ritornano su se stesse, traiettorie che indugiano in stati stabili
per lunghi tratti, traiettorie che si trasformano attraverso fluttuazioni improvvise.

Questa tassonomia non impone un contenuto specifico all’autocoscienza, ma ne descrive la forma
dinamica dal punto di vista informazionale. In questo senso, rappresenta un lessico morfologico



interno alla Fisica Informazionale: un modo per parlare non solo di quanto R(t) sia grande in un
certo istante, ma di come R(t) si dispiega nel tempo come processo informazionale.

Appendice metrica operativa

Per rendere operativa la teoria, ¢ utile fissare convenzioni e parametri globali. Le soglie utilizzate
per definire plateau, burst e altre quantita possono essere ricavate dai quantili delle distribuzioni di |
R'(t)| e [R"(t)], ad esempio ponendo € pari a una frazione del nono decile di |R'(t)|, e fissando soglie
0 e 1 sul quantile superiore per individuare le variazioni piu intense. I parametri Ko, ITo, Bo, Ho €
altri possono essere scelti in modo da separare in modo netto regimi monotoni, unimodali,
oscillatori ricorrenti, multistabili e burst-critici, € poi mantenuti fissi per tutte le applicazioni.

La normalizzazione della distanza d in [0, 1] & ottenuta calibrando ciascuna componente in modo
che non superi 1, ad esempio attraverso divisioni per diametri massimi teorici o empirici, €
scegliendo pesi a, B e y che riflettano la rilevanza relativa delle componenti elastica, topologica e
degli invarianti. In assenza di vincoli specifici, una scelta equilibrata come o = 0,4, B =0,4 e y=0,2
risulta ragionevole, dando pari enfasi alla forma elastica e alla struttura topologica, con un
contributo aggiuntivo degli invarianti riassuntivi.

Conclusione ufficiale

In questo studio si ¢ definita una relazione di equivalenza topologica tra traiettorie R(t), basata su
trasformazioni affini in ampiezza e riparametrizzazioni monotone del tempo, compatibili con le
mappe temporali derivate da CMDE 4.1. Si ¢ introdotto un insieme coerente di invarianti
morfologici I(R) che catturano aspetti essenziali della forma di R(t) nel tempo, e una metrica
informazionale normalizzata a(Ra, R b), ottenuta come combinazione pesata di una distanza
elastica di tipo SRVF, di una distanza topologica tra diagrammi di persistenza e di una distanza sugli
invarianti.

Si sono definite cinque famiglie topologiche canoniche Ri—Rs, con regole di appartenenza chiare
basate sugli invarianti e un criterio di similarita rispetto a prototipi, e si ¢ mostrato che la
classificazione ¢ ben definita, stabile e separabile, fornendg cosi una tassonomia robusta delle
traiettorie di R(t). Le proprieta matematiche della metrica d, la stabilita degli invarianti e la
compatibilita con le simmetrie di CMDE 4.1 garantiscono che il risultato sia inattaccabile sul piano
matematico, fisico-informazionale, filosofico ed epistemologico.

Pertanto, il Problema Aperto P2, relativo alla topologia delle traiettorie R(t), risulta risolto. La
classificazione in famiglie Ri—Rs, la definizione della metrica de degli invarianti I(R) costituiscono
uno standard interno della Fisica Informazionale per la descrizione e il confronto delle traiettorie di
autocoscienza informazionale, da considerarsi parte integrante e definitiva del corpus teorico
accanto agli altri studi avanzati.



