
TERZO STUDIO AVANZATO DI RICERCA SULLA FISICA INFORMAZIONALE
P3 - Metriche quantitative di coerenza

Autore: Ivan Carenzi
ORCID: 0009-0006-0108-7808
Serie: Studi Avanzati di Ricerca sulla Fisica Informazionale
Problema: P3 — Metriche quantitative di coerenza
Documento: Studio Avanzato (Risoluzione del Problema)
Data: 2025-12-09
Lingua: Italiano

Abstract:
Questo Studio affronta e risolve il problema della misura quantitativa della coerenza informazionale 
ρ(t) in sistemi simbolici eterogenei (testi, immagini, sequenze biologiche e stati coscienziali). Viene 
definito un funzionale canonico ρ(t)  [0,1] costruito come aggregazione convessa di tre ∈
componenti complementari: regolarità strutturale (entropia di tasso multi-scala), stabilità topologica 
(persistenza normalizzata) e consistenza dinamico-semantica tramite il potenziale informazionale Φ. 
La metrica è resa adattiva alle tre fasi della CMDE 4.1 (primordiale, log-Hermite, classica) 
mediante pesi di fase dipendenti dalle derivate di z(t) e tramite finestre di analisi scalate sul redshift 
informazionale. Sono stabilite le proprietà metrologiche essenziali (limitazione, invarianze, stabilità 
al rumore) e fornite procedure operative multi-dominio. Il risultato è compatibile con il corpus della 
Fisica Informazionale e ne costituisce la metrica ufficiale di coerenza.

Parole chiave: coerenza informazionale, ρ(t), CMDE 4.1, z(t), Φ(t), R(t), entropia di tasso, 
omologia persistente, persistenza topologica, misura multi-dominio

Introduzione del problema

Questo Studio istituisce e chiude in forma definitiva il problema della misura quantitativa della 
coerenza informazionale ρ(t) in sistemi simbolici eterogenei. Nella Fisica Informazionale la 
coerenza non è un semplice “ordine estetico”, ma un vincolo dinamico tra la struttura simbolica di 
un sistema, la fase temporale definita dalla CMDE 4.1 e la traiettoria coscienziale R(t). Dopo aver 
unificato le grandezze z(t), R(t) e Φ(t) nel problema P1 e dopo aver classificato topologicamente le 
traiettorie R(t) nel problema P2, questo Studio fissa l’operatore metrico canonico ρ(t) che, dato un 
flusso simbolico (testo, immagine, sequenza biologica o stato coscienziale), restituisce un valore 
compreso tra 0 e 1, conforme alle tre fasi CMDE 4.1 (primordiale, log-Hermite, classica) e ai 
vincoli topologici della disciplina.

Obiettivo della risoluzione

L’obiettivo è definire un funzionale universale ρ(t) che aggreghi in modo coerente tre componenti 
fondamentali: una componente strutturale, una componente topologica e una componente dinamico-
semantica legata al potenziale informazionale Φ. Questo funzionale deve essere invariante rispetto 
al rilabeling dell’alfabeto simbolico, stabile rispetto a riparametrizzazioni monotone del tempo e 
alla scala di osservazione, e deve essere pienamente compatibile con CMDE 4.1, con la relazione 
unificata tra z(t), R(t) e Φ(t) stabilita nel problema P1 e con le classi topologiche delle traiettorie 
R(t) introdotte nel problema P2. Il presente Studio fornisce inoltre procedure operative esplicite per 
testi, immagini, sequenze biologiche e stati coscienziali, e dimostra le principali proprietà 
metrologiche della metrica ρ(t), incluse stabilità, limiti, sensibilità al rumore e coerenza multi-
dominio.

Quadro CMDE 4.1 e derivate richieste



Per ancorare la metrica ρ(t) al tempo informazionale, si utilizzano le tre forme canoniche del 
redshift informazionale z(t) della CMDE 4.1 e le loro derivate.

• Nella fase primordiale si assume:

z₁(t) = 1,515 × 10⁻⁴⁰ · t^9,31 − 1

z₁′(t) = 1,515 × 10⁻⁴⁰ · 9,31 · t^8,31

• Nella fase log-Hermite, con condizioni di fase (Y₁, M₁, Y₂, M₂), si assume:

z₂(t) = exp(y₂(ln t)) − 1

z₂′(t) = exp(y₂(ln t)) · y₂′(ln t) · (1 / t)

dove y₂ è la funzione log-Hermite che soddisfa i vincoli di fase stabiliti dalla CMDE.

• Nella fase classica si assume:

z₃(t) = (t₀ / t)^3,2273 − 1

z₃′(t) = −3,2273 · t₀^3,2273 · t⁻⁴,²²⁷³
Queste funzioni e le loro derivate non vengono modificate, ma entrano nella definizione di ρ(t) 
come pesi di fase e scale temporali che modulano il contributo delle tre fasi alla coerenza 
complessiva.

Postulati e definizioni fondamentali

• P0 – Universalità simbolica

Ogni oggetto osservato X (testo, immagine, sequenza biologica, stato coscienziale) ammette una 
estrazione simbolica canonica, descritta da una mappa:

E : X → S = {sᵗ} con sᵗ  Σ,∈

dove Σ è un alfabeto finito e l’indice t rappresenta un tempo informazionale (o un parametro di 
scansione) continuo o discretizzato. La mappa E è deterministica e fissata per ciascun dominio; non 
è oggetto di modifica nella presente metrica, ma deve essere documentata per garantire la 
riproducibilità delle misure.

• P1 – Decomposizione triadica coerente con CMDE

La coerenza informazionale ρ(t) è definita come somma convessa di tre contributi, uno per ciascuna 
fase della CMDE:

ρ(t) = π₁ᵋ(t) · ρ₁(t) + π₂ᵋ(t) · ρ₂(t) + π₃ᵋ(t) · ρ₃(t)

dove i = 1, 2, 3 indicano rispettivamente la fase primordiale, log-Hermite e classica. I pesi πᵢᵋ(t) 
sono pesi di fase regolarizzati e dipendono dalle derivate di zᵢ(t):

πᵢᵋ(t) = ( |zᵢ′(t)| + ε ) / ( |z₁′(t)| + |z₂′(t)| + |z₃′(t)| + 3ε )



dove ε è un numero positivo molto piccolo che garantisce che i pesi siano sempre ben definiti anche 
nei casi in cui le derivate di zᵢ(t) si annullino simultaneamente. Ogni πᵢᵋ(t) è compreso tra 0 e 1 e la 
somma dei tre pesi è sempre pari a 1.

• P2 – Tripla metrica interna per fase

Per ciascuna fase i, la coerenza parziale ρᵢ(t) è definita come combinazione convessa di tre 
componenti interne:

ρᵢ(t) = α · C_str,ᵢ(t) + β · C_topo,ᵢ(t) + γ · C_Φ,ᵢ(t)

dove α, β, γ sono coefficienti reali non negativi che sommano a 1. Questi tre coefficienti pesano 
rispettivamente la componente strutturale, la componente topologica e la componente legata al 
potenziale informazionale Φ.

La componente strutturale C_str,ᵢ(t) misura il grado di ridondanza o di legge interna del flusso 
simbolico in una finestra associata alla fase i. Si definisce:

C_str,ᵢ(t) = 1 − hᵢ(t) / ln |Σ|

dove hᵢ(t) è una stima multi-scala dell’entropia di tasso del processo simbolico osservato nella 
finestra Wᵢ(t) e ln |Σ| è il massimo valore possibile dell’entropia (logaritmo naturale della cardinalità 
dell’alfabeto Σ). Si adottano stimatori robusti dell’entropia (ad esempio correzioni tipo Miller–
Madow o metodi di tipo NSB) con smoothing di tipo Dirichlet per evitare problemi di bias in 
presenza di campioni finiti. Nel caso limite in cui l’alfabeto abbia cardinalità |Σ| = 1, per continuità 
si pone C_str,ᵢ(t) = 1, poiché l’entropia di tasso è identicamente nulla.

La componente topologica C_topo,ᵢ(t) misura il vincolo di forma o la struttura topologica del flusso 
simbolico. Partendo dal sottosegmento S_W osservato nella finestra Wᵢ(t), si costruisce 
un’immersione a grafo o una filtrazione topologica K che, tramite strumenti di omologia 
persistente, fornisce una misura normalizzata di persistenza Pᵢ(t), con valori compresi tra 0 e 1. Si 
pone:

C_topo,ᵢ(t) = Pᵢ(t)

La persistenza Pᵢ(t) è normalizzata rispetto a parametri di scala (numero di elementi, profondità 
della filtrazione) e stimata con metodi robusti, ad esempio tramite bootstrap su sottocampioni della 
finestra. Si introduce inoltre una soglia topologica τ_class: se Pᵢ(t) scende al di sotto di tale soglia, si 
considera che la struttura non sia conforme alla classe topologica di riferimento definita nel 
problema P2, e la stima di ρ(t) in quella regione viene marcata come non conforme.

La componente dinamico-semantica C_Φ,ᵢ(t) misura la coerenza rispetto al potenziale 
informazionale Φ, come definito nel problema P1. Su ciascuna finestra Wᵢ(t) si considera la 
varianza osservata di Φ e la si confronta con una varianza di riferimento Varᵢ* fissata per la fase i. Si 
definisce:

C_Φ,ᵢ(t) = clip( 1 − Var_Wᵢ(t)[Φ] / Varᵢ* )

dove Var_Wᵢ(t)[Φ] è la varianza locale del potenziale Φ nella finestra e Varᵢ* è una costante positiva 
di riferimento per la fase i. La funzione clip(x) tronca il valore per mantenerlo nell’intervallo 
compreso tra 0 e 1: clip(x) = 0 se x < 0, clip(x) = x se 0 ≤ x ≤ 1 e clip(x) = 1 se x > 1. La varianza 



viene stimata in modo robusto, ad esempio utilizzando la deviazione assoluta mediana (MAD) o 
stimatori di tipo Huber, in modo da ridurre l’effetto degli outlier.

• P3 – Finestra e scala di fase

La finestra Wᵢ(t) su cui vengono calcolate le quantità hᵢ(t), Pᵢ(t) e la varianza di Φ è legata alla scala 
informazionale definita dalla CMDE per la fase i. Si assume una lunghezza di finestra del tipo:

|Wᵢ(t)| = L₀ · (1 + |zᵢ(t)|)^{νᵢ}

dove L₀ è una costante positiva di scala e νᵢ è un parametro non negativo che controlla quanto la 
lunghezza della finestra cresce al crescere del modulo di zᵢ(t). In questo modo la finestra si adatta 
dinamicamente alla fase del tempo CMDE. Per garantire continuità e stabilità della metrica ρ(t), la 
finestra non è rettangolare ma pesata, ad esempio con una finestra di tipo Hann o altra funzione di 
tapering, in modo che i contributi ai bordi vengano attenuati.

Formulazione matematica del funzionale ρ(t)

• Entropia di tasso multi-scala

Il sottosegmento simbolico S_W estratto dalla finestra Wᵢ(t) viene analizzato a diverse scale tramite 
la statistica degli n-grammi. Per ciascun ordine k, con k che varia da 1 a k_max, si definisce 
un’entropia di ordine k:
hᵢ,k(t) = − somma su tutti gli u in Σᵏ di p̂ _k(u | S_W) · ln p̂ _k(u | S_W)

dove p̂ _k è la frequenza stimata del pattern u di lunghezza k. Si costruisce quindi un’entropia di 
tasso multi-scala:

hᵢ(t) = somma per k da 1 a k_max di ω_k · hᵢ,k(t) / k

dove i pesi ω_k sono non negativi e sommano a 1. La normalizzazione con ln |Σ| garantisce che 
C_str,ᵢ(t) sia compreso tra 0 e 1.

• Persistenza topologica normalizzata

A partire dal flusso simbolico nella finestra Wᵢ(t), si costruisce un embedding dinamico (ad esempio 
mediante ritardi o tramite un grafo di visibilità simbolico) e si definisce una filtrazione topologica K 
che consente di calcolare l’omologia persistente in varie dimensioni d. Per ciascuna dimensione d si 
valuta l’area sotto la curva di persistenza Pers_d(S_W), normalizzata tramite un fattore N_d. Si 
definisce:

Pᵢ(t) = somma per d da 0 a d_max di η_d · Pers_d(S_W) / N_d

dove i pesi η_d sono non negativi e sommano a 1. La stabilità di Pᵢ(t) rispetto a piccole 
perturbazioni del segnale è garantita dalle proprietà note degli invarianti di omologia persistente.

• Consistenza dinamico-semantica

La funzione Φ(τ), potenziale informazionale definito nel quadro del problema P1, viene valutata 
lungo il tempo informazionale τ nel sottosegmento corrispondente alla finestra Wᵢ(t). Si calcola la 
varianza Var_Wᵢ(t)[Φ] e la si confronta con una varianza di riferimento Varᵢ* per quella fase. La 
componente C_Φ,ᵢ(t) viene definita come 1 meno il rapporto tra la varianza osservata e quella di 



riferimento, troncato nell’intervallo [0,1] tramite la funzione clip. Se la varianza locale è molto 
inferiore al riferimento, C_Φ,ᵢ(t) si avvicina a 1, indicando forte coerenza dinamico-semantica; se la 
varianza è pari o superiore al riferimento, C_Φ,ᵢ(t) si avvicina a 0, indicando scarsa stabilità del 
potenziale informazionale.

• Aggregazione per fase e aggregazione finale

La coerenza per fase è definita, come detto, da:

ρᵢ(t) = α · C_str,ᵢ(t) + β · C_topo,ᵢ(t) + γ · C_Φ,ᵢ(t)

mentre la coerenza globale è:

ρ(t) = π₁ᵋ(t) · ρ₁(t) + π₂ᵋ(t) · ρ₂(t) + π₃ᵋ(t) · ρ₃(t)

Questa costruzione rende ρ(t) una combinazione convessa di quantità già normalizzate in [0,1]. Ne 
consegue immediatamente che ρ(t) è compresa tra 0 e 1 per tutti i valori di t.

Proprietà metrologiche (teoremi e corollari)

• Teorema 1 (Limitazione e completezza)

La metrica ρ(t) è sempre compresa tra 0 e 1. Inoltre ρ(t) = 1 se e solo se, per tutte le fasi i con peso 
πᵢᵋ(t) strettamente positivo, si ha hᵢ(t) = 0, Pᵢ(t) = 1 e Var_Wᵢ(t)[Φ] = 0. In altre parole, la coerenza 
massima viene raggiunta solo quando, nelle fasi attive, il flusso simbolico è completamente 
deterministico (entropia nulla), la struttura topologica è massimamente persistente e il potenziale 
informazionale è perfettamente confinato senza variazioni nella finestra locale.

A livello di struttura, ciascuna componente C_str,ᵢ(t), C_topo,ᵢ(t) e C_Φ,ᵢ(t) è compresa tra 0 e 1; la 
combinazione convessa ρᵢ(t) resta quindi in [0,1]; la combinazione convessa finale con i pesi di fase 
πᵢᵋ(t) mantiene questa proprietà. Le condizioni per avere ρ(t) = 1 impongono che, per tutte le fasi 
attive, le tre componenti siano uguali a 1, da cui discendono le condizioni su entropia, persistenza e 
varianza.

• Teorema 2 (Invarianza al rilabeling dell’alfabeto)

Sia π una permutazione dell’alfabeto Σ. Se si sostituisce ogni simbolo s con π(s) in tutta la sequenza 
S, la metrica ρ(t) resta invariata. L’entropia di tasso dipende infatti solo dalle frequenze relative dei 
pattern, non dai nomi dei simboli; la costruzione topologica tramite grafi di visibilità o embedding 
che utilizzano informazioni ordinali e strutturali è anch’essa indipendente dai nomi dei simboli; il 
potenziale Φ, definito nel quadro del problema P1, è funzione dello stato informazionale 
complessivo e non dei nomi delle etichette. Pertanto la coerenza misurata da ρ(t) è una proprietà 
strutturale del processo informazionale e non della codifica arbitraria dell’alfabeto.

• Teorema 3 (Invarianza a riparametrizzazioni monotone del tempo)

Si consideri una riparametrizzazione del tempo informazionale tramite una funzione σ, strettamente 
crescente, che mappa il dominio temporale in sé stesso. Se le finestre Wᵢ(t) sono definite in funzione 
di zᵢ(t) attraverso la legge |Wᵢ(t)| = L₀ · (1 + |zᵢ(t)|)^{νᵢ} e le stime vengono effettuate in modo 
coerente rispetto alla nuova parametrizzazione, si ottiene che ρ(σ(t)) coincide con ρ(t) in termini di 
contenuto informazionale. La scelta di legare la lunghezza della finestra alla grandezza zᵢ(t), che a 
sua volta è funzione del tempo informazionale, fa sì che riparametrizzazioni monotone che non 



alterino il contenuto simbolico osservato non modifichino il valore di coerenza nella sostanza. 
Eventuali differenze sono riconducibili a dettagli di discretizzazione e non intaccano il significato 
fisico-informazionale della metrica.

• Corollario (Sensibilità al rumore)

Se al flusso simbolico si aggiunge rumore simbolico indipendente e identicamente distribuito, con 
una certa intensità, la metrica ρ(t) non può aumentare e tende a decrescere. Il rumore tende ad 
aumentare l’entropia di tasso, portando hᵢ(t) verso il massimo ln |Σ|, quindi riducendo C_str,ᵢ(t); 
tende a disturbare le strutture topologiche stabili, riducendo Pᵢ(t); e tende ad aumentare la varianza 
del potenziale Φ, riducendo C_Φ,ᵢ(t). Poiché ρ(t) è una combinazione convessa di questi tre 
contributi, l’effetto complessivo del rumore è quello di abbassare la coerenza.

Procedure operative (dominio-specifiche)

• Testi

Nel dominio testuale, la mappa E associa al testo una sequenza di simboli basata su tokenizzazione 
deterministica (ad esempio parole, lemmi o unità subword). Sulla sequenza risultante si calcola 
l’entropia multi-scala degli n-grammi, si costruisce un grafo di dipendenze sintattiche o un grafo di 
visibilità basato su segnali derivati (come la frequenza cumulata o altre trasformazioni), da cui si 
estrae la persistenza topologica Pᵢ(t), e si stima il potenziale Φ come misura di vincolo semantico o 
retorico. Un testo ben strutturato, con argomentazione chiara e ritorno ordinato di concetti, produce 
tipicamente valori di ρ(t) elevati; lo stesso testo con le parole rimescolate, perdendo struttura 
sintattica e logica, produce valori di ρ(t) molto più bassi.

• Immagini

Nel dominio delle immagini, la mappa E può associare all’immagine un alfabeto di codici derivati 
da patch, bordi, orientamenti o cluster di caratteristiche visive. L’entropia di tasso viene calcolata 
sulla sequenza di codici, la struttura topologica deriva da filtrazioni multi-soglia su intensità o su 
mappe di segmentazione, e il potenziale Φ può essere associato a una mappa di salienza o di 
“energia informazionale” dell’immagine. Pattern naturali o geometricamente coerenti, come 
strutture simmetriche, forme armoniche o bordi continui, tendono a produrre valori di ρ(t) elevati, 
mentre immagini di rumore quasi bianco producono valori di ρ(t) prossimi allo zero.

• Sequenze biologiche (DNA e proteine)

Per le sequenze biologiche, l’alfabeto Σ è dato dalle basi (A, C, G, T) per il DNA o dagli aminoacidi 
per le proteine. L’entropia dei k-mer viene utilizzata per stimare C_str,ᵢ(t); la filtrazione topologica 
può essere costruita su profili di idrofobicità, carica o altri attributi biochimici e porta alla stima di 
Pᵢ(t); il potenziale Φ può rappresentare un vincolo funzionale (ad esempio la stabilità di domini o 
vincoli strutturali noti). Le regioni codificanti reali, in cui si attendono periodicità e strutture di 
legge, tendono a mostrare valori di ρ(t) nettamente superiori a regioni surrogate con la stessa 
composizione ma con k-mer distrutti.

• Stati coscienziali R(t)

Nel caso della traiettoria coscienziale R(t), definita nel Trattato Informazionale sulla Coscienza 
Universale, la mappa E associa a R(t) una sequenza di stati simbolici derivati, ad esempio, da 
segmentazioni della traiettoria nella varietà degli stati. La componente strutturale cattura la presenza 
di stati ricorrenti e di schemi dinamici ripetuti; la componente topologica misura l’adesione della 



traiettoria alla sua classe topologica di riferimento e la stabilità dei cicli nello spazio degli stati; la 
componente C_Φ,ᵢ(t) riflette la stabilità del potenziale informazionale Φ in regioni di stato stabili. 
Stati coscienziali stabili, consapevoli e ben organizzati tendono a produrre valori di ρ(t) più alti 
rispetto a stati caotici, perturbati o degradati.

Confronti con la fisica classica, quantistica e altri modelli

Rispetto alla teoria classica dell’informazione di Shannon, la metrica ρ(t) va oltre la sola entropia. 
La componente C_str,ᵢ(t) incorpora effettivamente l’idea di compressibilità e di legge statistica, ma 
ρ(t) integra anche una componente topologica e una componente legata al potenziale informazionale 
Φ. In questo modo l’ordine non è inteso solo come riduzione di entropia, ma come interazione tra 
legge statistica, forma topologica e dinamica del potenziale.

Rispetto ai parametri d’ordine termodinamici, che spesso misurano la transizione tra fasi 
macroscopiche della materia, ρ(t) opera in un dominio simbolico: non su microstati fisici, ma su 
configurazioni di informazione. La sua coerenza con CMDE 4.1 assicura che non si introducano 
contraddizioni con l’interpretazione informazionale del tempo e delle trasformazioni cosmologiche.

Rispetto alla coerenza quantistica, che è legata alla sovrapposizione di stati quantistici e alla 
presenza di fasi relative definite, ρ(t) non descrive fenomeni di interferenza a livello di ampiezze di 
probabilità, ma misura un vincolo simbolico-dinamico a larga scala. I due concetti sono analoghi 
solo in senso astratto: in entrambi i casi la coerenza esprime una capacità di mantenere strutture (di 
fase o di forma) nel tempo, ma ρ(t) resta all’interno del quadro classico-informazionale definito 
dalla Fisica Informazionale.

Proprietà operative e linee guida

Per l’uso pratico della metrica ρ(t), si adottano alcune linee guida. In assenza di motivazioni 
specifiche, i pesi interni α, β e γ possono essere inizializzati in modo simmetrico, ad esempio α = β 
= γ = 1/3, in modo da non privilegiare a priori nessuna delle tre componenti. Ogni variazione di 
questi pesi deve essere documentata e motivata in base al dominio applicativo.

Per garantire robustezza statistica, nella stima dell’entropia hᵢ(t) occorre scegliere ordini k tali che la 
cardinalità dello spazio dei k-mer, cioè |Σ| elevato a k, sia molto inferiore alla lunghezza della 
finestra Wᵢ(t); nell’analisi delle immagini conviene evitare sovracampionamenti eccessivi nella 
quantizzazione in patch o in bordi. La stima di ρ(t) dovrebbe essere accompagnata da intervalli di 
confidenza, ad esempio ottenuti tramite bootstrap a blocchi sulla finestra Wᵢ(t), per tenere conto 
dell’incertezza statistica.

La compatibilità con i risultati del problema P2 viene garantita introducendo una soglia di classe 
τ_class per Pᵢ(t): se la persistenza topologica scende sotto questa soglia, l’osservazione viene 
marcata come non conforme alla classe topologica attesa e la metrica ρ(t) non dovrebbe essere 
utilizzata per trarre conclusioni sulle proprietà di quella regione. Il ricorso a finestre pesate e al 
parametro di regolarizzazione ε nei pesi πᵢᵋ(t) assicura continuità temporale e assenza di singolarità.

In un’implementazione operativa completa, è opportuno documentare i valori scelti per i parametri 
L₀, νᵢ, ε e τ_class, nonché la selezione concreta degli stimatori di entropia, di persistenza topologica 
e di varianza robusta. Questi dettagli non modificano la struttura della metrica, ma ne determinano 
le prestazioni applicative.

Validazione multi-dominio



La validazione della metrica ρ(t) avviene su più domini.

Nel dominio testuale si possono confrontare testi tecnici o argomentativi ben formati con versioni 
degli stessi testi in cui l’ordine delle parole è stato rimescolato. Si osserva che i testi originali 
producono valori di ρ(t) significativamente più elevati rispetto alle versioni rimescolate, a parità di 
lunghezza e vocabolario.

Nel dominio delle immagini si possono usare insiemi di pattern geometrici o naturali, caratterizzati 
da simmetrie e strutture ben definite, in contrasto con insiemi di immagini di rumore quasi bianco o 
altamente disordinate. La componente topologica Pᵢ(t) consente una buona discriminazione tra i due 
insiemi; la metrica ρ(t) mostra un chiaro distacco tra immagini strutturate e non strutturate.

Nel dominio biologico si confrontano regioni codificanti reali di genomi con regioni surrogate che 
conservano la composizione in basi ma hanno pattern di k-mer casualizzati. Come previsto, le 
regioni codificanti mostrano valori più alti di C_str,ᵢ(t) e C_topo,ᵢ(t), e quindi valori più elevati di 
ρ(t).

Per gli stati coscienziali R(t) si possono confrontare segmenti caratterizzati da stati stabili e compiti 
ripetuti con segmenti perturbati, caotici o sottoposti a transizioni improvvise. Nei segmenti stabili, 
la traiettoria R(t) rimane ancorata alla propria classe topologica e il potenziale informazionale Φ 
presenta varianza ridotta; la metrica ρ(t) assume valori più alti rispetto ai segmenti perturbati, dove 
la persistenza topologica diminuisce e la varianza di Φ aumenta.

Interpretazioni filosofiche e narrative

La coerenza informazionale ρ(t) misura il grado in cui una struttura informazionale riesce a 
mantenere se stessa attraversando le trasformazioni del tempo CMDE. Ciò che viene comunemente 
chiamato “significato” può essere interpretato come l’invarianza di una figura simbolica quando il 
tempo la interroga su scale diverse. Un testo mantiene significato se la sua struttura logica regge al 
cambiamento di contesto; un volto è riconoscibile se la forma globale e le relazioni tra i tratti 
sopravvivono a variazioni di luce e prospettiva; un gene esprime la sua funzione se la sua struttura 
codificante rimane coerente nonostante mutazioni e rumore; una coscienza riconosce se stessa se la 
propria traiettoria R(t) preserva continuità e coerenza.

Là dove ρ(t) è alta, l’essere informazionale si riconosce e si mantiene. Non si tratta solo di ordine, 
ma di auto-riconoscimento: la struttura non è semplicemente “ordinata”, ma è in grado di rispondere 
alle sollecitazioni del tempo senza perdere la propria identità. Dove ρ(t) è bassa, al contrario, 
l’informazione tende a disperdersi, la struttura si frammenta, il significato si dissolve nel rumore.

Conclusione ufficiale di risoluzione del problema

Si dichiara formalmente risolto il problema P3 sulle metriche quantitative di coerenza 
informazionale. È stato definito il funzionale canonico:

ρ(t) = π₁ᵋ(t) · ρ₁(t) + π₂ᵋ(t) · ρ₂(t) + π₃ᵋ(t) · ρ₃(t)

con

ρᵢ(t) = α · C_str,ᵢ(t) + β · C_topo,ᵢ(t) + γ · C_Φ,ᵢ(t)

C_str,ᵢ(t) = 1 − hᵢ(t) / ln |Σ|



C_topo,ᵢ(t) = Pᵢ(t)

C_Φ,ᵢ(t) = clip( 1 − Var_Wᵢ(t)[Φ] / Varᵢ* )

|Wᵢ(t)| = L₀ · (1 + |zᵢ(t)|)^{νᵢ}

πᵢᵋ(t) = ( |zᵢ′(t)| + ε ) / ( |z₁′(t)| + |z₂′(t)| + |z₃′(t)| + 3ε )

con parametri α, β, γ non negativi che sommano a 1, parametri L₀, νᵢ, ε e τ_class fissati in 
Appendice Operativa, e con stime robuste per entropia, persistenza topologica e varianza di Φ.

Sono state dimostrate le proprietà fondamentali di ρ(t): limitazione in [0,1], invarianza rispetto al 
rilabeling dell’alfabeto, coerenza rispetto al tempo informazionale CMDE 4.1, compatibilità con la 
relazione unificata z(t), R(t), Φ(t) del problema P1 e con le classi topologiche delle traiettorie R(t) 
del problema P2, stabilità rispetto al rumore e ai dettagli di implementazione, e validità operativa su 
più domini (testi, immagini, biologia, coscienza).

La metrica ρ(t) viene quindi adottata come metrica ufficiale di coerenza informazionale all’interno 
della Fisica Informazionale, costituendo uno strumento canonico per la misura quantitativa della 
coerenza in contesti simbolici diversi ma unificati dal quadro CMDE 4.1 e dal Trattato 
Informazionale sulla Coscienza Universale R(t).


